test

Always belive in yourself

$$ \begin{align*} \

(C)^\prime &= 0 &\text{(C is a constant)} \ \

(x^n)^\prime &= nx^{n-1} \ \

(a^x)^\prime &= a^x\ln{a} &(e^x)^\prime &= e^x \ \

(\log_a{x})^\prime &= \frac{1}{x\ln{a}} &(\ln{x})^\prime &= \frac{1}{x} \ \ \

(\sin{x})^\prime &= \cos{x} &(\cos{x})^\prime &= -\sin{x} \ \

(\tan{x})^\prime &= \sec^2{x} &(\cot{x})^\prime &= -\csc^2{x} \ \

(\sec{x})^\prime &= \sec{x}\tan{x} &(\csc{x})^\prime &= -\csc{x}\cot{x} \ \ \

(\arcsin{x})^\prime &= \frac{1}{\sqrt{1 - x^2}} &(\arccos{x})^\prime &= -\frac{1}{\sqrt{1 - x^2}} \ \

(\arctan{x})^\prime &= \frac{1}{1 + x^2} &(arccot{x})^\prime &= -\frac{1}{1 + x^2} \ \

\end{align*} $$

That allows you to cope