test
Always belive in yourself
$$ \begin{align*} \
(C)^\prime &= 0 &\text{(C is a constant)} \ \
(x^n)^\prime &= nx^{n-1} \ \
(a^x)^\prime &= a^x\ln{a} &(e^x)^\prime &= e^x \ \
(\log_a{x})^\prime &= \frac{1}{x\ln{a}} &(\ln{x})^\prime &= \frac{1}{x} \ \ \
(\sin{x})^\prime &= \cos{x} &(\cos{x})^\prime &= -\sin{x} \ \
(\tan{x})^\prime &= \sec^2{x} &(\cot{x})^\prime &= -\csc^2{x} \ \
(\sec{x})^\prime &= \sec{x}\tan{x} &(\csc{x})^\prime &= -\csc{x}\cot{x} \ \ \
(\arcsin{x})^\prime &= \frac{1}{\sqrt{1 - x^2}} &(\arccos{x})^\prime &= -\frac{1}{\sqrt{1 - x^2}} \ \
(\arctan{x})^\prime &= \frac{1}{1 + x^2} &(arccot{x})^\prime &= -\frac{1}{1 + x^2} \ \
\end{align*} $$